
HIGH-PERFORMANCE
DATA SCIENCE WITH RAPIDS

Zahra Ronaghi
AI Infrastructure Manager

END-TO-END ACCELERATED GPU DATA SCIENCE

3

Data Processing Evolution
Faster data access, less data movement

25-100x Improvement
Less code

Language flexible
Primarily In-Memory

HDFS
Read

HDFS
Write

HDFS
Read

HDFS
Write

HDFS
Read

Query ETL ML Train

HDFS
Read

Query ETL ML Train

HDFS
Read

GPU

Read
Query

CPU

Write

GPU

Read
ETL

CPU

Write

GPU

Read

ML

Train

5-10x Improvement
More code

Language rigid
Substantially on GPU

Traditional GPU Processing

Hadoop Processing, Reading from disk

Spark In-Memory Processing

4

APP A

Data Movement and Transformation
The bane of productivity and performance

APP B

Copy & Convert

Copy & Convert

Copy & Convert

APP A GPU
Data

APP B
GPU
Data

Read Data

Load Data

APP B

CPU GPU

APP A

5

APP A

Data Movement and Transformation
What if we could keep data on the GPU?

APP B

Copy & Convert

Copy & Convert

Copy & Convert

APP A GPU
Data

APP B
GPU
Data

Read Data

Load Data

APP B

CPU GPU

APP A

6

Learning from Apache Arrow

From Apache Arrow Home Page - https://arrow.apache.org/

7

Data Processing Evolution
Faster data access, less data movement

25-100x Improvement
Less code

Language flexible
Primarily In-Memory

HDFS
Read

HDFS
Write

HDFS
Read

HDFS
Write

HDFS
Read

Query ETL ML Train

HDFS
Read

Query ETL ML Train

HDFS
Read

GPU

Read
Query

CPU

Write

GPU

Read
ETL

CPU

Write

GPU

Read

ML

Train

Arrow
Read ETL

ML

Train

5-10x Improvement
More code

Language rigid
Substantially on GPU

50-100x Improvement
Same code

Language flexible
Primarily on GPU

RAPIDS

Traditional GPU Processing

Hadoop Processing, Reading from disk

Spark In-Memory Processing

Query

8

Pandas
Analytics

CPU Memory

Data Preparation VisualizationModel Training

Scikit-Learn
Machine Learning

NetworkX
Graph Analytics

PyTorch Chainer MxNet
Deep Learning

Matplotlib/Seaborn
Visualization

Open Source Data Science Ecosystem
Familiar Python APIs

Dask

Data Preparation Model Training Visualization

9

cuDF cuIO
Analytics

GPU Memory

Data Preparation VisualizationModel Training

cuML
Machine Learning

cuGraph
Graph Analytics

PyTorch Chainer MxNet
Deep Learning

cuXfilter <> pyViz
Visualization

RAPIDS
End-to-End Accelerated GPU Data Science

Dask

Data Preparation Model Training Visualization

cuDF cuIO
Analytics

cuML
Machine Learning

cuGraph
Graph Analytics

10

Faster Speeds, Real-World Benefits

cuIO/cuDF –
Load and Data Preparation XGBoost Machine Learning

Time in seconds (shorter is better)

cuIO/cuDF (Load and Data Prep) Data Conversion XGBoost

Benchmark

200GB CSV dataset; Data prep includes
joins, variable transformations

CPU Cluster Configuration

CPU nodes (61 GiB memory, 8 vCPUs, 64-
bit platform), Apache Spark

DGX Cluster Configuration

5x DGX-1 on InfiniBand
network

8762

6148

3925

3221

322

213

End-to-End

11

cuIO/cuDF –
Load and Data Preparation XGBoost Machine Learning

Time in seconds (shorter is better)

cuIO/cuDF (Load and Data Prep) Data Conversion XGBoost

End-to-End

Faster Speeds, Real-World Benefits
Even Better with A100 and RAPIDS 0.17

Benchmark

200GB CSV dataset; Data prep includes
joins, variable transformations

CPU Cluster Configuration

CPU nodes (61 GiB memory, 8 vCPUs, 64-
bit platform), Apache Spark

A100 Cluster Configuration

16 A100 GPUs (40GB each)

12

Lightning-fast performance on real-world use cases

GPU Big Data Benchmark (GPU-BDB) is a data science
benchmark derived from TPCx-BB1, consisting of 30 end-to-end
queries representing real-world ETL and Machine Learning
workflows. It involves both structured and unstructured data.
The benchmark starts with reading data from disk, performs
common analytical and ML techniques (including NLP), then
writes results back to disk to simulate a real world workflow.

Results at 10TB scale show RAPIDS’ performance increasing over
time, while TCO continues to go down. The recently announced
DGX-A100 640GB is perfectly suited to data science workloads,
and lets us do more work in almost half as many nodes as the
DGX-A100 320GB (6 nodes vs 10) for even better TCO.

Continuous Improvement

● 2.8x performance, almost a third the nodes, and
cheaper to boot—in <1 year

● BlazingSQL at 10TB showing 25% improvement
compared to Dask over TCP

● Q27 faster and more accurate with hugging Face
1: GPU-BDB is der ived from the TPCx-BB benchmark and is used for internal per formance testing. Results fr om GPU-BDB

ar e not compar able to TPCx -BB.

13

cuDF

14

cuDF cuIO
Analytics

GPU Memory

Data Preparation VisualizationModel Training

cuML
Machine Learning

cuGraph
Graph Analytics

PyTorch Chainer MxNet
Deep Learning

cuxfilter <> pyViz
Visualization

RAPIDS
GPU Accelerated data wrangling and feature engineering

Dask

15

cuDF — ANALYTICS

Libraries

Dask-cuDF: Distributed Computing using Dask; Support for multi-GPU, multi-node

cuDF: Python bindings for libcudf (Pandas like API for DataFrame manipulation)

libcudf: CUDA C++ Apache Arrow GPU DataFrame and operators (Join/Merges, GroupBys,

Sort, Filters, etc.)

GPU DataFrame Library Built on Apache Arrow

libcudf
CUDA C++ Implementation

cuDF
Python Bindings

Dask-cuDF
Distributed Computing

cuIO — FILE I/O Direct File Loading to cuDF

Availability Supported File Formats

Now CSV, Parquet, ORC, JSON

16

• Follow Pandas APIs and provide >10x speedup

• CSV Reader - v0.2, CSV Writer v0.8

• Parquet Reader – v0.7, Parquet Writer v0.12

• ORC Reader – v0.7, ORC Writer v0.10

• JSON Reader - v0.8

• Avro Reader - v0.9

• GPUDirect Storage integration in progress for

bypassing PCIe bottlenecks!

• Key is GPU-accelerating both parsing and

decompression wherever possible Source: Apache Crail blog: SQL Performance: Part 1 - Input File Formats

Extraction is the Cornerstone
cuDF I/O for Faster Data Loading

http://crail.incubator.apache.org/blog/2018/08/sql-p1.html

17

cuDF v0.13, Pandas 0.25.3

Running on NVIDIA DGX-1:

GPU: NVIDIA Tesla V100 32GB
CPU: Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz

Benchmark Setup:

RMM Pool Allocator Enabled

DataFrames: 2x int32 columns key columns, 3x int32 value

columns

Merge: inner; GroupBy: count, sum, min, max calculated

for each value column

Benchmarks: single-GPU Speedup vs. Pandas

18

cuDF String Support

Current v0.16 String Support
▸Regular Expressions

▸ Element-wise operations

▸ Split, Find, Extract, Cat, Typecasting, etc…

▸ String GroupBys, Joins, Sorting, etc.

▸Categorical columns fully on GPU

▸Native String type in libcudf C++

▸NLP Preprocessors

▸Tokenizers, Normalizers, Edit Distance, Porter
Stemmer, etc.

▸ Further performance optimization

▸ JIT-compiled String UDFs

800

700

600

400

300

200

0

Lower () Find(#) Slice(1,15)

m
il
li
se

c
o
n
d
s

Pandas Cuda Strings

500

100

19

Interoperability for the Win

Real-world workflows often need to share data between
libraries

RAPIDS supports device memory sharing between many
popular data science and deep learning libraries

Keeps data on the GPU--avoids costly copying back and
forth to host memory

Any library that supports DLPack or
__cuda_array_interface__ will allow for sharing of
memory buffers between RAPIDS and supported libraries

20

cuML

21

GPU Memory

Data Preparation VisualizationModel Training

Dask

Machine Learning
More models more problems

cuDF cuIO
Analytics

cuML
Machine Learning

cuGraph
Graph Analytics

PyTorch Chainer MxNet
Deep Learning

cuXfilter <> pyViz
Visualization

22

cuML — MACHINE LEARNING

Dask

Distributed Training: Used for distributed cuML model training

Python API

Language Bindings: Python bindings to C++/CUDA based cuML

Uses cuDF DataFrames as input

cuML

C++/CUDA ML Algorithms: C++/CUDA machine learning algorithms

ml-prims

CUDA ML Primitives: Low level machine learning primitives used in cuML | Linear
algebra, statistics, matrix operations, distance functions, random number generation

GPU Accelerated Scikit-learn + XGBoost Libraries

Python

Cython

C++ ML Algorithms

C++ ML Prims

CUDA Libraries

CUDA

23

RAPIDS matches common Python APIs

from sklearn.cluster import DBSCAN

dbscan = DBSCAN(eps = 0.3, min_samples = 5)

dbscan.fit(X)

y_hat = dbscan.predict(X)

Find Clusters

from sklearn.datasets import make_moons

import pandas

X, y = make_moons(n_samples=int(1e2),

noise=0.05, random_state=0)

X = pandas.DataFrame({'fea%d'%i: X[:, i]

for i in range(X.shape[1])})

CPU-Based Clustering

24

RAPIDS matches common Python APIs

from cuml import DBSCAN

dbscan = DBSCAN(eps = 0.3, min_samples = 5)

dbscan.fit(X)

y_hat = dbscan.predict(X)

Find Clusters

from sklearn.datasets import make_moons

import cudf

X, y = make_moons(n_samples=int(1e2),

noise=0.05, random_state=0)

X = cudf.DataFrame({'fea%d'%i: X[:, i]

for i in range(X.shape[1])})

GPU-Accelerated Clustering

25

Benchmarks: Single-GPU cuML vs Scikit-learn

1x V100 vs. 2x 20 Core CPUs (DGX-1, RAPIDS 0.15)

26

cuML’s Forest Inference Library accelerates
prediction (inference) for random forests and
boosted decision trees:

● Works with existing saved models
(XGBoost, LightGBM, scikit-learn RF cuML RF
soon)

● Lightweight Python API
● Single V100 GPU can infer up to 34x faster than

XGBoost dual-CPU node
● Over 100 million forest inferences per sec (with

1000 trees) on a DGX-1 for large (sparse) or
dense models

Forest Inference
Taking models from training to production

23x 36x 34x 23x

27

● RAPIDS works closely with the XGBoost
community to accelerate GBDTs on GPU

● XGBoost can seamlessly load data from
cuDF dataframes and cuPy arrays

● Dask allows XGBoost to scale to arbitrary
numbers of GPUs

● With the gpu_hist tree method, a single
GPU can outpace 10s to 100s of CPUs

● RAPIDS comes paired with XGBoost 1.1
(as of 0.14)

+

28

RAPIDS Integrated into Cloud ML Frameworks

Accelerated machine learning models in
RAPIDS give you the flexibility to use

hyperparameter optimization (HPO)
experiments to explore all variants to find

the most accurate possible model for your

problem.

With GPU acceleration, RAPIDS models
can train 25x faster than CPU equivalents,

enabling more experimentation in less

time.

The RAPIDS team works closely with
major cloud providers and OSS solution

providers to provide code samples to get

started with HPO in minutes.

https://rapids.ai/hpo

29

HPO Use Case: 100-Job Random Forest Airline Model

Huge speedups translate into >7x TCO reduction

Based on sample Random Forest training code from cloud-ml-examples repository, running on Azure ML. 10 concurrent workers with 100 total runs, 100M rows, 5-fold cross-validation per run.

GPU nodes: 10x Standard_NC6s_v3, 1 V100 16G, vCPU 6 memory 112G, Xeon E5-2690 v4 (Broadwell) - $3.366/hour
CPU nodes: 10x Standard_DS5_v2, vCPU 16 memory 56G, Xeon E5-2673 v3 (Haswell) or v4 (Broadwell) - $1.017/hour"

C
o
s
t

R
u
n
ti

m
e

(H
o
u
rs

)

30

cuML Single-GPU Multi-Node-Multi-GPU

Gradient Boosted Decision Trees (GBDT)

Linear Regression

Logistic Regression

Random Forest

K-Means

K-NN

DBSCAN

UMAP

Holt-Winters

ARIMA

T-SNE

Principal Components

Singular Value Decomposition

SVM

Road to 1.0 - cuML
RAPIDS 0.17 - December 2020

31

▸SHAP provides a principled way to explain
the impact of input features on each
prediction or on the model overall - critical
for interpretability

▸SHAP has often been too computationally-
expensive to deploy for large-scale
production

▸RAPIDS ships with GPU-accelerated SHAP
for XGBoost with speedups of 20x or more
(demo code available in the XGBoost repo)

▸RAPIDS 0.17 includes experimental Kernel
and Permutation explainers for black box
models

SHAP Explainability
GPUTreeSHAP for XGBoost

https://github.com/slundberg/shap
https://github.com/dmlc/xgboost/blob/master/demo/gpu_acceleration/shap.ipynb
https://docs.rapids.ai/api/cuml/nightly/api.html#model-explanation-shap

32

cuGraph

33

GPU Memory

Data Preparation VisualizationModel Training

Dask

Graph Analytics
More connections more insights

cuDF cuIO
Analytics

cuML
Machine Learning

cuGraph
Graph Analytics

PyTorch Chainer MxNet
Deep Learning

cuXfilter <> pyViz
Visualization

34

Goals and Benefits of cuGraph

BREAKTHROUGH PERFORMANCE

▸Up to 500 million edges on a single
32GB GPU

▸Multi-GPU support for scaling into
the billions of edges

SEAMLESS INTEGRATION WITH cuDF
AND cuML

▸Property Graph support via
DataFrames

Focus on Features and User Experience

MULTIPLE APIs

▸Python: Familiar NetworkX-
like API

▸C/C++: lower-level granular
control for application
developers

GROWING FUNCTIONALITY

▸Extensive collection of
algorithm, primitive, and utility
functions

35

Graph Technology Stack

Python

Cython

cuGraph Algorithms

Prims

CUDA Libraries

CUDA

Dask cuGraph
Dask cuDF

cuDF
Numpy

thrust
cub

cuSolver
cuSparse
cuRand

Gunrock*

cuGraphBLAS cuHornet

nvGRAPH has been Opened Sourced and integrated into cuGraph. A legacy version is available in a RAPIDS GitHub repo * Gunrock is from UC Davis

36

Multi-GPU PageRank Performance
PageRank portion of the HiBench benchmark suite

HiBench Scale Vertices Edges CSV File
(GB)

of GPUs PageRank for
3 Iterations (secs)

Huge 5,000,000 198,000,000 3 1 1.1

BigData 50,000,000 1,980,000,000 34 3 5.1

BigData x2 100,000,000 4,000,000,000 69 6 9.0

BigData x4 200,000,000 8,000,000,000 146 12 18.2

BigData x8 400,000,000 16,000,000,000 300 16 31.8

*BigData x8, 100x 8-vCPU nodes, Apache Spark GraphX⇒ 96 mins!

37

Road to 1.0 - cuGraph
RAPIDS 0.17 - December 2020

cuGRAPH Single-GPU Multi-Node-Multi-GPU

Page Rank

Personal Page Rank

Katz

Betweenness Centrality

Spectral Clustering

Louvain

Ensemble Clustering for Graphs

K-Truss & K-Core

Connected Components (Weak & Strong)

Triangle Counting

Single Source Shortest Path (SSSP)

Breadth-First Search (BFS)

Jaccard & Overlap Coefficient

Force Atlas 2

Hungarian Algorithm

Leiden

38

HOW TO GET STARTED AND EXAMPLES

39

https://ngc.nvidia.com/registry/nvidia-rapidsai-rapidsai

https://hub.docker.com/r/rapidsai/rapidsai/

https://github.com/rapidsai

https://anaconda.org/rapidsai/

RAPIDS
How do I get the software?

https://ngc.nvidia.com/registry/nvidia-rapidsai-rapidsai
https://hub.docker.com/r/rapidsai/rapidsai/
https://github.com/rapidsai
https://anaconda.org/rapidsai/

40

Easy Installation
Interactive Installation Guide

https://rapids.ai/start.html

41

Explore: RAPIDS GitHub
https://github.com/rapidsai

42

Notebook Examples

NVIDIA Pascal GPU architecture or better

CUDA 10.1, 10.2, 11.0 & compatible NVIDIA driver

Ubuntu 16.04/18.04, CentOs 7

Docker CE v19.03+

nvidia-docker v2+

RAPIDS PREREQUISITES

https://github.com/rapidsai/notebooks

https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://github.com/nvidia/nvidia-docker/wiki/Installation-(version-2.0)

43

GOOGLE GROUPS STACK OVERFLOW

https://groups.google.com/
forum/#!forum/rapidsai

DOCKER HUB SLACK CHANNEL

https://hub.docker.com/
r/rapidsai/rapidsai

https://rapids-goai.slack.com/join https://stackoverflow.com
/tags/rapids

Join the Conversation

Contribute back: Issues, Feature Requests, PRs, Blogs, Tutorials, Videos, QA

https://groups.google.com/forum/#!forum/rapidsai
https://hub.docker.com/r/rapidsai/rapidsai
https://join.slack.com/t/rapids-goai/shared_invite/zt-goyqj8pe-MHHggTGmZwiss2qv3KO33g
https://stackoverflow.com/tags/rapids

44

Dask + GPUs

45

cuDF cuIO
Analytics

GPU Memory

Data Preparation VisualizationModel Training

cuML
Machine Learning

cuGraph
Graph Analytics

PyTorch Chainer MxNet
Deep Learning

cuXfilter <> pyViz
Visualization

RAPIDS
Scaling RAPIDS with Dask

Dask

46

Dask
What is Dask?

• Distributed compute scheduler built to scale
Python

• Scales workloads from laptops to
supercomputer clusters

• Extremely modular: disjoint scheduling,
compute, data transfer and out-of-core
handling

• Multiple workers per node allow easier one-
worker-per-GPU model

47

Why Dask?

• Easy Migration: Built on top of NumPy, Pandas

Scikit-Learn, etc.

• Easy Training: With the same APIs

• Trusted: With the same developer community

PyData Native

• Easy to install and use on a laptop

• Scales out to thousand-node clusters

Easy Scalability

• Most common parallelism framework today

in the PyData and SciPy community

Popular

• HPC: SLURM, PBS, LSF, SGE

• Cloud: Kubernetes

• Hadoop/Spark: Yarn

Deployable

48

Why OpenUCX?

• TCP sockets are slow!

• UCX provides uniform access to transports (TCP,
InfiniBand, shared memory, NVLink)

• Alpha Python bindings for UCX (ucx-py)
https://github.com/rapidsai/ucx-py

• Will provide best communication performance, to Dask
based on available hardware on nodes/cluster

Bringing hardware accelerated communications to Dask

https://github.com/rapidsai/ucx-py

49

OpenUCX
Dask Array SVD + CuPy Experiment with and without UCX

r

50

Scale up with RAPIDS

Accelerated on single GPU

NumPy -> CuPy/PyTorch/..
Pandas -> cuDF
Scikit-Learn -> cuML
Numba -> Numba

RAPIDS and Others

NumPy, Pandas, Scikit-Learn,
Numba and many more

Single CPU core
In-memory data

PyData

Sc
a
le

 U
p
 /

 A
c
c
e
le

ra
te

51

Scale out with RAPIDS + Dask with OpenUCX

Accelerated on single GPU

NumPy -> CuPy/PyTorch/..
Pandas -> cuDF
Scikit-Learn -> cuML
Numba -> Numba

RAPIDS and Others

Multi-GPU
On single Node (DGX)
Or across a cluster

RAPIDS + Dask with
OpenUCX

Sc
a
le

 U
p
 /

 A
c
c
e
le

ra
te

Scale out / Parallelize

NumPy, Pandas, Scikit-Learn,
Numba and many more

Single CPU core
In-memory data

PyData

Multi-core and Distributed PyData

NumPy -> Dask Array
Pandas -> Dask DataFrame
Scikit-Learn -> Dask-ML
… -> Dask Futures

Dask

52

Development Environment

Jupyter Lab - Dask Extension - NVDashboard Extension

THANK YOU!

